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Summary. Enforcing software integrity is a challenge in embedded sys-
tems which cannot employ modern protection mechanisms. In this pa-
per, we explore feasibility of software integrity checking from measur-
ing passive electromagnetic emissions of FPGA-implemented SoCs. We
show that clock-cycle-accurate side-channel models can be built by uti-
lizing gray-box analysis and regression techniques. The generality and
effectiveness of our methods are shown by three different SoCs, pro-
filed and tested on different chips of the same model. Our technique is
non-invasive, and does not interrupt normal execution or change hard-
ware/software configuration of the target device, making it particularly
attractive for already-deployed systems.

1 Introduction

Enforcing software integrity is a fundamental problem in system security: a de-
vice runs some software, and a verifier wants to know whether the device runs
an unmodified version of the software, or a different piece of code, or origi-
nal code but in an unintended execution state [13, 17, 43]. Enforcing software
integrity for embedded systems, especially fielded/legacy ones, is extremely dif-
ficult. Software-based methods such as hypervisors [41], separation kernels [19],
and control flow integrity checking [40, 43] detect/prevent tampering by uti-
lizing hardware security features that provide some form of separation such as
operation modes and memory protection. Remote attestation [10, 23, 29], secure
boot [16], and watchdog coprocessors [42] rely on trusted hardware and memory
access controls to execute attestation code, e.g., to verify memory content and ex-
amine signatures appearing on buses. However, many embedded systems do not
have such sophisticated capabilities due to hardware cost, high power consump-
tion, and/or the difficulty in updating fielded components. Further, an external
verification mechanism may be required no matter which protection method is
used, as some security assumptions may weaken with time, and verification of
design-time assumptions is needed.

For systems composed of discrete components, sniffing bus traffic between
constituent components may suffice to verify that the system acts as expected.
For Systems-on-Chips (SoCs), however, internal activities cannot be observed di-
rectly, so we utilize “side-channel” emissions to infer them. The idea is to discover
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the relationships between the internal states of a target device and side-channel
information so that when given a new side-channel measurement, it is possible
to determine whether the internal state is an expected one or not. Unexpected
state may be a sign of incorrect execution or malware. Researchers have tried
using external power measurements to detect abnormal behavior at the level of
functions or code segments [18, 38, 45], but attackers can write compact malware
(as small as one instruction in size), code-reuse malware, as well as malware that
has minimal impact on system-wise side-channel measurements [49]. In such sit-
uations, software attestation [9, 36, 54, 62] can be used to detect modification
of software down to single instructions. These methods utilize the timing side-
channel and do not rely on specialized hardware or sophisticated processors, but
do require interruption of normal execution of the target device. In addition, sys-
tems must explicitly support software attestation, making retrofitting difficult
for legacy and deployed systems.

In this work we explore the possibility of using passive and non-invasive side-
channel measurements for software integrity checking on SoCs. Our approach
infers internal runtime state of an embedded system at a granularity sufficient to
detect compact and side-channel-aware malware, without modifying the target
device. This is extremely beneficial since the verifier is external to the device
under test and is the only possible effective verifier when all security mechanisms
(if any) internal to the device have failed.

Instead of analyzing numerous hardware platforms one by one, we choose
field-programmable gate arrays (FPGAs) as the target SoC device. It has unique
features compared to other platforms [20], but also poses unique challenges,
namely the inability to perform full white-box analysis, as the detailed design
and parameters of the base array and the configuration circuits are unknown
to developers. The use of IP cores further obscures the electrical characteristics
of a device. We therefore work with only partial knowledge, and so term our
approach “gray-box” side-channel analysis.

In this work, we make the following contributions:

• We demonstrate the feasibility of using passive electromagnetic (EM) emis-
sions of FPGA-based SoCs for software integrity checking. Our method is
scalable, low-cost, and easily applicable to deployed systems.

• We show how to build cycle-accurate models of passive EM radiation of
FPGA-based SoCs without access to detailed design specifications and how
to efficiency and effectiveness use regression for EM profiling, even for sys-
tems with large instruction sets and variable instruction cycles.

• We experimentally validate the generality of our approach on three different
FPGA-based SoCs – two based on a soft processor IP core (namely NIOS
II), and one on the OpenMSP430 open processor core, and further show
that profiling is robust to manufacturing variations by testing on a different
FPGA chip of the same model with the chip for profiling.

• We provide bounds on the (very low) probability that an EM-aware adver-
sary can successfully modify code without being detected.
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2 Related Work

Passive side-channel emissions of various embedded systems have long been stud-
ied to optimize power usage and perform EMI/EMC analysis [58]. Side-channel
models can be built at different levels given different degrees of knowledge on
system configurations. At the lowest level, power consumption of FPGAs has
been modeled at the transistor level in order to build power-efficient FPGA ar-
chitectures and power-aware CAD tools [8, 25, 31, 47, 50]. Dynamic power con-
sumption is in general modeled as the aggregation of power consumed by each
node inside an FPGA whose load and parasitic capacitances are charged and dis-
charged at signal transitions, as well as short-circuit power that occurs in CMOS
inverters [8, 25, 50]. For FPGA-implemented SoCs in which a complex proces-
sor is involved, low-level analysis becomes impractical, especially given reliance
on detailed design information, so researchers built side-channel models from
empirical measurements of real boards. Senn et al. [53] measured system-level
power consumption of the NIOS II core and Zipf et al. [63] performed a hybrid
functional- and instruction-level power analysis of LEON2, another soft-core
processor. However, these estimation models profiled the average side-channel
emissions of embedded systems rather than trying to infer system state (which
program is running and its runtime state) from side-channel measurements.

In the cryptographic hardware domain, passive side-channel emissions of
FPGA-implemented cryptographic routines are used to extract secret materi-
als (e.g., keys) [7, 33, 34, 60]. Such analyses concentrate on a few leakage points
of the keys, with cryptographic algorithms often considered to be public (al-
though the implementation details may be unknown), or irrelevant. Secret keys
may be exposed regardless of cryptographic algorithms used [11], so the work on
cryptographic hardware does not present a comprehensive picture of dynamic
side-channel emissions of an entire embedded system.

Work on side-channel analysis of general programs used passive system-wide
power measurements to detect anomalous behaviors and/or malware [18, 27, 28,
38, 45, 61]. These methods, however, assume malware (code) to be sufficiently
long and not written to conceal its side-channel profiles. To use side-channels for
rigorous integrity checking, we must consider compact and side-channel-aware
malware. Software attestation [9, 36, 54, 62] utilizes the timing side-channel and
is capable of detecting malware at such precision. However, the device must
support such attestation, and carrying out the process requires interruption of
the device execution, a particular drawback for legacy and actively-used systems.

Researchers have tried to build side-channel models of the instruction set
for certain smart cards and microcontrollers [22, 26, 27, 46, 51, 55, 56, 59], and
to build side-channel-based disassemblers by recognizing instruction operations
from passive measurements. However, this focused on recognizing instruction op-
erations (e.g., MOVLW) instead of the entire instructions including operands (e.g.,
MOVLW 0xAA) and content of operands. In [37], researchers found that passive
power measurement of some microcontroller was dominated by a small number
of data-dependent relationships, implying that recognizing instruction opera-
tions solely from power consumption is unlikely to be reliable.
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Fig. 1: General software integrity checking problem with explicit communication
channels and side-channels

For integrity checking of the FPGA platforms specifically, previous research
on reading SRAM [57] and detection of FPGA trojans [30] shows the funda-
mental possibility of verifying FPGA configuration logic. The methods however
require invasive measurements and specialized equipment, and do not scale well
for complex systems. It is not known how to efficiently verify the software of an
FPGA-based embedded system in practice.

3 Problem Definition

We define the general software integrity checking problem as follows, shown
in Figure 1. There are two parties: the prover P (a device running the target
application software S), and the verifier V (who would like to determine whether
P runs S or a modified version S′). V is a trusted entity who knows the initial
hardware and software configuration of P . P and V communicate over an explicit
channel C and/or a side-channel E. V bases its judgment on evidence that P
provides directly through C (e.g., using signatures) or indirectly over E (e.g., by
timing or EM radiation).

This model can be instantiated in different ways. In a microcontroller-based
embedded system, for example, S is naturally the software of the microcon-
troller, and P is the microcontroller chip and the printed circuit board (PCB).
In an FPGA-based embedded system, however, both the hardware and the soft-
ware are programmable: FPGA configuration logic describes both the embedded
system hardware (processor, memory, I/O, etc.) as well as the application soft-
ware running on the system. Since reconfiguring an FPGA causes considerable
difference in observations (such as loss of main clock in EM emissions), it is
straightforward to discover tampering with FPGA configuration logic. We fo-
cus on detecting tampering with the application software which is modifiable
on-the-fly in memory. S is therefore defined as the application software, and
P incorporates the PCB, the FPGA chip, and the FPGA configuration logic
describing the hardware of the system.
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3.1 Threat Model

Attacker. We assume that the attacker is unable to modify or inject faults into
the PCB and the FPGA chip of the target embedded system. This is enforceable
in practice using physical tamper-resistance or tamper-proof techniques [35].
Moreover, the attacker is not an insider of the FPGA or IP core manufacturers,
and cannot tamper the FPGA IC design, IP cores, or the CAD tools, on which
we rely to establish the ground truth. We further assume that the attacker is
unable to modify the FPGA hardware configuration, i.e., cannot reconfigure the
hardware of the FPGA. This can be achieved by authenticating the configuration
bit-stream [20], or by removing configuration peripherals before deployment, or
by observing the EM emissions as mentioned in last paragraph. However, we
assume that the attacker is able to modify the application software S, e.g.,
modifying the RAM of the device through buffer overflows, data-based attacks,
etc. We also assume that the attacker is side-channel-aware – actively attempts
to evade detection via side-channel emissions by crafting the modified software
S′ in a fashion that minimizes side-channel deviations from S. Nonetheless, the
attacker cannot invasively profile the side-channels of the target device.

Verifier. We assume a verifier of very limited capability for applicability of
our approach. We assume that the verifier knows the configuration of a target
device and is able to profile the side-channel characteristics only on a different
device of the same model with the target device. The verifier can only perform
non-invasive measurements on the target device, which is important for this
methodology to be easily applied to deployed devices.

We emphasize that the verifier is completely external to the target device,
and cannot modify the device hardware or software to change the nature or
magnitude of side-channel emissions, so that the verifier has the advantage of
invisibility to attackers. The verifier can only passively measure the target device
with measurement equipment incurring minimal impact on EMC. For example,
the verifier may remove the shielding enclosure for measurements, but may not
remove the noise decoupling circuits.

4 Experimental Setup

For a representative legacy and deployed system, we choose a general-purpose
development board for the Altera Cyclone III FPGA EP3C5E144C8 as the tar-
get device. The FPGA chip is designed for low-cost, small-scale applications.
We choose the EM side-channel, which is much more convenient to measure
than power consumption. Preliminary test on the chip shows that it is not EM-
shielded, which eases our experiment. We implement one SoC on the FPGA at
a time in the way that the only observable I/O is a parallel peripheral I/O (the
memory chip on the development board is not used). Two different chips (i.e.,
boards) of the same model are used, one for profiling and another for testing.
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(b) A typical waveform

Fig. 2: Experimental setup and an example of a recorded result

We find that several positions on the board emit strong EM signals of similar
waveform. We have tried both far-field and near-field measurements of EM radi-
ation, and obtained the best result from near-field measurements with a shielded
loop probe similar to the EMC probe in [48]. The probe measures the global ra-
diation of the FPGA chip. The resulting setup, with the probe position near one
of the power regulators, is shown in Figure 2a.

The output is amplified by a 20 dB amplifier with bandwidth from 1 kHz to
1 GHz, and then is sampled by a PicoScope 5244B oscilloscope, which has a 200
MHz bandwidth and a maximally 500 MS/s sample rate for each channel. We
use the 20 MHz integrated hardware filter of the oscilloscope to avoid aliasing.
The processor core clock frequency therefore should be set far lower – we set
it to 1 MHz. Our results should be repeatable at higher frequencies using more
costly oscilloscopes supporting higher bandwidths. The position and orientation
of the probe is then adjusted to gain signals of the maximal signal-to-noise ratio
(SNR). Probe location is re-adjusted for each SoC. The resulting SNR of the EM
traces, computed by the ratio of the variance of the signal and noise, is around
15 dB. A typical single-captured waveform is shown in Figure 2b.

We have intentionally used low-cost signal acquisition and analysis equipment
in order to show that verification of low-end legacy systems can be accomplished
with only modest resources. The most costly component in our experiment setup
is the off-the-shelf USB oscilloscope, at about $2,000; putting the total system
cost at under $2,100. Combining all components into a single “software integrity
measurement device” and manufacturing at scale is likely to further reduce costs.

5 The Test Code and SoC Test Targets

We evaluate our approach on three SoCs, implemented in turn on our FPGA
test-bed: a NIOS II-based system capable of running an operating system; a
simpler NIOS II-based system with a more constrained resource configuration;
and an OpenMSP430-based system that is also operating system-capable.
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5.1 System A: NIOS II-based SoC

Our first experiment is on a NIOS II-based SoC. NIOS II is a general-purpose 32-
bit RISC soft processor core from Altera [4]. We chose the NIOS II/e Quartus II
13.1 web edition (the latest edition for the target FPGA). NIOS II/e is designed
for simple control logic applications and/or inexpensive systems. It supports
over a hundred instruction operations, executed in a variable number of clock
cycles, ranging from six to 38. (Our experiments show it is actually seven to 39,
contrary to specifications.) The HDL source is not available, and the processor
offers only limited configurability. It does not support different operating modes
or memory protection, so modern security mechanisms that rely on processor-
enforced separation cannot be used.

The NIOS II-based system is composed of the core, 40 kB M9K RAM, a
timer, and a 16-bit parallel I/O connected using the Avalon bus. The system can
run the FreeRTOS operating system [3] and several application tasks. The entire
FPGA-implemented SoC consists of the NIOS II-based system, a small control
unit that supplies clock and reset signals to the core, and a phase-locked loop
(PLL). Programs are loaded and executed directly in RAM, forming a complete
SoC, i.e., with no bus interfaces outside the chip except parallel I/O. We remove
the JTAG interface of the processor, as it is unlikely to be present in a deployed
device. The 1MHz clock is obtained by using a PLL core connected to an external
25 MHz clock source. We do not make any effort to enhance the side-channel
emissions when generating the system, so the experiment measures the typical
EM radiation of a NIOS II-based system.

5.2 System B: Resource-constrained NIOS II-based SoC

The second SoC is also NIOS II-based, but simpler, to represent a “bare-bones”
system that does not have enough resources to run an operating system. It has
only a 16 kB M9K RAM for program and data memory, and an 8-bit parallel
I/O. No timers are present. Otherwise is identical to system A.

5.3 OpenMSP430-based SoC (System C)

The third system is based on OpenMSP430, a 16-bit open-source MSP430 family-
compatible processor [5]. It supports 27 core instructions and seven addressing
modes. Any valid combination of source and destination addressing modes is
possible in an instruction, unlike NIOS II, which uses explicit load and store op-
erations. Instructions of OpenMSP430 can be byte or word operations, whereas
NIOS II supports only 32-bit word operations for instructions other than load
and store. The number of clock cycles required for an instruction is variable
(from one to six), depending both on the instruction type and addressing mode.

The SoC consists of the processor, 32 kB M9K RAM for program memory and
4 kB for data memory, a timer, and a 16-bit parallel I/O. Otherwise configuration
is the same for all three systems. Programs are compiled using MSP430-GCC,
then binaries are converted to an FPGA RAM initialization file, and loaded and
executed directly in RAM, forming a complete SoC.
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5.4 Test Code

Ideally, we should exercise all the possible internal states of the target SoCs to
build side-channel models (i.e., template analysis). However, this is impractical
since our preliminary tests show that the EM radiation depends on instruction
operations, operands, and the content of the registers, memories, etc. (see Sec-
tion 8). We can only build side-channel models from a very limited number of
programs and data configurations, compared with the entire state space of the
system. The validity of the resulting model is tested both by the reasonable-
ness of its form and by the predictive power for side-channel emissions of new
programs and data. Our test code is a integration of the FreeRTOS operating
system port for each core (except system B) and re-implementation (to fit into
available memory) of a part of the CoreMark benchmark suite [1]: integer matrix
multiplication, floating-point multiplication, greatest common divisor, quick-sort
of vector data, list find, list quick-sort, string hash, and a finite state machine,
as well as random assembly code we generate for each core that avoids memory
access and bypasses the native compilers: one composed of logic/arithmetic in-
structions, and one composed of only five types of logic/arithmetic instructions.
The program binaries execute in a similar number of clock cycles. We do not
model the EM radiation of I/Os, or code that change system-level behaviors,
e.g., the timer intervals.

6 Modeling Side-channels

Our preliminary tests show that EM emissions of different instruction opera-
tions largely overlap. Profiling target EM emissions by using general classifiers
is therefore difficult [22, 26, 51, 56]. Furthermore, knowing only the instruction
operations does not guarantee integrity since an attacker may write malware by
varying only the operands and content of registers/memory, while keeping the
operations the same. Previous research [37] has shown that the power consump-
tion of a microcontroller can be accurately described as a linear model of a few
internal data-dependent activities, e.g., Hamming weight (HW) of instructions
and Hamming distance (HD) between operand and result – the contribution of
different operations is negligible. We perform a similar experiment using EM
measurements (same probe), and find that previous linear model of power con-
sumption still holds for EM radiation. The only difference is the values of re-
gression coefficients and the omission of a near-DC component, which is linear
to the HW of instructions in the power model. This strongly suggests that we
may be able to build similar regression models for the FPGA-based SoCs.

We assume the EM sample Yt at time t can be modeled as a function of
internal states xt = (x1t, . . . , xpt) at t:

Yt = f(xt) +Nt

where Nt encloses remaining components in the EM radiation including noise
and time-dependent components, Yt and Nt are necessarily random variables.
xit(i = 1, . . . , p) are called the predictor variables and Yt the response variable.
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Since both processors execute instructions in a variable number of clock cy-
cles, depending on operands and bus traffic, we build side-channel models for
each clock cycle rather than for each instruction cycle. The sample rate of the
oscilloscope is 500 MS/s, meaning at least 500 regression models can be built. In
practice, however, most information is found at clock rising edges. Yt is therefore
the peak amplitude at rising edges of clock t. A sum of 26 points near the peak
gives slightly better results than using the single peak value. We denoise the
traces for use in regression by averaging over only 100 EM traces. Selection of
the predictor variables still poses a challenge.

Black-box Model-building. Switches of internal signals and voltage differences of
neighboring signals are a promising initial choice for xt, supported by research on
power consumption of FPGAs and general circuits [21, 25, 31, 47, 50]. Because
the design details of NIOS II are not available, we initially treat the system as
a black box and attempt to reason about internal activities directly from the
instruction set documents, as in [37]. However, the EM samples correlate poorly
with predictions. This is not surprising, as the target SoC systems are much more
complex than the PIC microcontroller in previous work. In particular, unlike the
PIC chip, there is no dominant power-consuming memory interface. We instead
turn to the simulation models of the processor cores.

For system A, register-transfer level (RTL) simulation gives, for example,
runtime values of thousands of signals, including 35 bus signals; gate-level post-
fit simulation gives runtime values of at least 8259 1-bit internal signals. For
system B, and system C, there are over 5800 and 12606 1-bit gate-level signals,
respectively. EM radiation must be related with these signals in some form. How-
ever, directly estimating f(·) does not work due to the sheer number of signals,
and also due to the multicollinearity among the signals (many signals are highly
correlated with each other, and thus only one signal in a correlated set may be
a useful predictor). Some signals are even identical – a simulation artifact. More
variables are identical when considering switches of signals (transitions from 0 to
1 or vice versa). However, removing duplicate variables does not eliminate mul-
ticollinearity, showing that more complex correlations exist among the signals
and signal switches.

As a first step in selecting representative signals for xt, we test whether the
EM radiation has similar amplitudes when a subset of internal signals stay the
same while others vary. If so, we need only to retain the subset of signals for
model building. Figure 3a shows pairs of EM measurements (peak amplitudes)
when bus signals are identical while other signals vary. The x-axis is one EM
measurement, and y-axis is another EM measurement. Figure 3b shows pairs of
EM measurements when signal transitions (0-1 and 1-0 are regarded as different
transitions) of bus signals are identical. These two figures mean that, no matter
what the form of f(·) is, the EM radiation is not determined only by the bus
signals. This is in contrast with the PIC chip, whose EM radiation is dominated
by the Hamming distance of bus signals. Therefore, we must include additional
variables in xt. Because it is impractical to try arbitrary subsets of signals, we
have to turn to the gate-level signals, as RTL signals are optimized out in final
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(a) Identical bus signals
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(b) Identical transitions of bus signals
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(c) Identical transitions of selected
gate-level signals
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(d) Identical Hamming distance of se-
lected gate-level signals

Fig. 3: Measurements of system A when a subset of internal states are identical

layout of the SoC system. However there are thousands of gate-level signals.
To select the most representative ones, we utilize the vendor-provided power
estimation tool PowerPlay [6], therefore taking the gray box modeling approach,
since PowerPlay encodes partial knowledge of the FPGA design.

PowerPlay is a tool for developers to estimate power consumption of an
FPGA system to allow selection of power supply and heat dissipation scheme.
Total thermal power estimates are claimed to have ±20% accuracy to silicon.
However, since PowerPlay only reports comparatively rough estimates of accu-
mulative power consumption, it cannot be directly used to solve our problem,
which requires side-channel models for at least each instruction. PowerPlay can,
however, generate a set of signal names for use in a gate-level simulation (which
is in turn used for power estimation). It is reasonable to assume that these sig-
nals contribute more significantly to power consumption (thus causing more EM
radiation). For system A, 1778 (out of 8259) gate-level signals are selected by
PowerPlay, a huge reduction in variables requiring post-processing.
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We again test whether EM radiation is similar when the 1778 signals are
identical while others vary. Figure 3c shows pairs of EM measurements when
signal transitions are identical for the 1778 variables, and Figure 3d shows pairs
of EM measurements when the HDs (which do not distinguish between 0-1 and
1-0) are identical. We do not find enough pairs whose absolute values of the
1778 variables are identical. Nevertheless, Figure 3d already illustrates that it is
reasonable to select HD of the 1778 variables as xt, regardless the real form of
f(·) (Note that the set of points in Figure 3c is a subset of those in Figure 3d).
After modeling is finished, we retry using the original 8259 gate-level signals,
and find that indeed modeling with the 1778 signals gives better results. For
systems B and C the number of selected signals is 1280 and 2715, respectively.

However, multicollinearity still exists among the selected variables. Since fur-
ther dividing the selected variables based on SoC structure does not lead to
improvement and exhaustive search is computationally impractical, we turn to
statistical techniques. There are several which can deal with predictors that have
multicollinearity: ridge regression, partial least-square regression (PLS), princi-
pal component regression (PCR), and stepwise regression. For the selected vari-
ables, we find that all regression techniques produce similarly good regression
models in terms of the coefficients of determination R2, MSE, and F -tests in
the model building step. To test validity of the regression techniques, we perform
model validation to measure model reasonableness and predictive power.

7 Validation

We perform five-fold cross-validation to test the ability of the regression model
in predicting EM radiation. Among the test programs (see Section 5.4), half are
used for modeling and the other half for testing. One FPGA chip is used for
building the EM model and a different FPGA chip of the same model is used for
testing the model. This stricter five-fold (compared to the common seven-fold or
even ten-fold) validation scheme is used because it is impractical to perform ex-
haustive exploration and associated physical measurements, so we are forced to
use a limited set of programs for side-channel profiling and derive a model which
accurately predicts the experimental results from all other possible programs.
The goal is to evaluate the validity of using above variable selection approach
and regression techniques for side-channel profiling, rather than to obtain a spe-
cific “best” model. Since some of the combinations of modeling/testing code
may yield better results, cross-validation eliminates this problem by repeating
the modeling and testing procedure using different programs for modeling and
testing each time. We exhaustively compute all 252 possible combinations. We
assume f(·) can be approximated as a first-order linear function for now. Pear-
son’s r and Spearman’s ρ are used to evaluate the quality of our models – the
larger the correlation, the greater the predictive power. Pearson’s r is effective
because we observe that slightly moving the probe will only cause the ampli-
tude of EM radiation to change linearly. We still compute Spearman’s ρ, which
can reveal nonlinear relationships between measurements and models (r and ρ
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Fig. 4: Pearson’s r for model validation, with the profiling (modeling) results in
the top row ((a)–(c)) and the testing (on another chip) results in the bottom row
((d)–(f)); from the darkest bar to the lightest are ridge regression, PLS, PCR,
and stepwise regression.

are equivalent when relationships are linear). Pearson’s r is shown in Figure 4.
Spearman’s ρ results are almost identical, validating our choice, and omitted
due to space constraints. In addition, regressing xt always has the highest cor-
relation coefficients when xt and Yt are aligned in time (omitted due to space
constraints). When profiling and testing using the same FPGA chip, all the r
and ρ values are slightly better (omitted due to space constraints), as expected.1

The results show that (with few exceptions) linear regression models can
predict EM radiation of new programs with satisfactory accuracy, especially for
system B. Adding the absolute values of the signals (i.e., Hamming weights) to
xt does not improve model performance. PLS and PCR outperform other tech-
niques and are stable in all cases (with no unacceptably low-performing outliers
r < 0.80). PLS and PCR have been used in various domains such as chem-
istry and biology, where, similar to our situation, one observation is associated
with many variables [24, 44]. PLS and PCR have nearly identical performance,
1 The parameters of each regression technique are selected to achieve best results for
a few pre-selected random modeling/testing combinations and then fixed for all the
others. Note that although for a particular combination the best parameter varies,
it does not change our conclusions.
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Fig. 5: Model prediction and measurements for the best PLS model of system A

which is interesting since unlike PLS, PCR does not take the response Yt into
account when selecting the predictors. Principal component analysis (PCA) has
been used in side-channel analysis as a preprocessing step of pattern match-
ing or classification to reduce dimension and to denoise the sampled traces in
time [12, 22]. We instead use PCA to eliminate multicollinearity for regression.
Note that there is no noise in the predictors xt, which are not random variables.

The effectiveness of the regression models is further shown in Figure 5. The
x-axis of Figure 5a is the actual measurement for a testing program, and the
y-axis is the model prediction (of the best PLS model of system A). Although
some outliers exist, most measurements and predictions fall along the line of
x = y. Figure 5b shows the Pearson’s r between the actual measurement of a
testing program and the model prediction which has an offset in time from the
actual measurement. The x-axis of Figure 5b is the time offset, and the y-axis is
r. A sharp peak occurs when the model prediction and real measurement have
no time offset, showing the soundness and validity of the model.

Second, we examine the resulting models for the reasonableness of their coef-
ficients. We observe that PLS and PCR result in similar regression coefficients for
each system. Several selected signals are clock signals that switch at each clock
cycle. These signals do not provide information on internal states, and should
only contribute to the constant in the model. Only ridge regression assigns non-
zero coefficients to these signals. This is due to the procedure of ridge regression
and has caused it to perform worse. PowerPlay reports that the M9K component
consumes the majority (∼60%) of the core dynamic power, but only a portion
of M9K signals have larger regression coefficients in our resulting models. We
have regressed separately with the M9K signals including memory and regis-
ters banks, as well as other signals reported in PowerPlay as consuming more
power, yet the resulting models are not better than original models, especially
in cross-validation.
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8 Applying Results to Software Integrity Checking

To enforce code integrity, we must guarantee that tampering with the internal
states of the system can be detected from side-channel measurements. Given
the regression model, we predict EM radiation of new programs by using only
gate-level simulation. We can therefore determine whether tampering with the
original code will be reflected in the emission or not.

We first consider a conventional attacker, who is unable to analyze the side-
channel of the system or unaware of the existence of a side-channel-based in-
tegrity checking mechanism. Integrity checking is a hypothetical test of whether
a given measurement is from tampered code/data (undesired state) or not. The
performance of this integrity mechanism is quantified by (1) the false positive
rate (when a normal system state is flagged as tampering), and (2) the false
negative rate (when tampering is performed, but is not flagged).

Table 1: False positive rates (%) for a(n) (aligned) single-captured EM trace

Threshold 0.90 0.85
Number of Cycles 7 14 21 7 14 21

System A 14.2 12.9 9.68 8.73 5.92 3.31
System B 13.1 10.3 8.57 8.52 6.14 3.08
System C 16.7 14.7 13.1 9.14 5.53 3.80

Table 2: False negative rates (%) for an aligned single-captured EM trace

Threshold 0.90 0.85
Number of Cycles 7 14 21 7 14 21

System A 20.6 4.65 1.75 30.5 9.83 4.01
System B 5.74 0.99 0.59 10.12 1.98 1.01
System C 0.81 0.18 0.13 1.54 0.22 0.14

Table 3: False negative rates (%) for an arbitrary single-captured EM trace

Threshold 0.90 0.85
Number of Cycles 7 14 21 7 14 21

System A 3.41 0.70 0.24 5.65 1.51 0.56
System B 1.43 0.16 0.09 2.93 0.38 0.16
System C 0.67 0.11 0.10 1.33 0.14 0.10

Recall that the SNR of our experiment is 15 dB. Taking both environmen-
tal noise and regression residual into account, we obtain from the best PLS
models and EM measurements that for system A, 85.8% of the Pearson’s r be-
tween seven-cycle single-captured traces (on the testing chip) with the model
prediction (from the profiling chip) is greater than 0.90 to execute at most one
instruction. We can design the integrity checking mechanism by fixing the thresh-
old 0.90, and then compute the false positive rate of any 7-/14-/21-cycle trace
for each system from real measurements. Table 1 lists the false positive rates
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Fig. 6: EM measurements of instructions grouped by operations for system A

when the threshold is fixed to 0.90 and 0.85. Seven cycles are chosen because the
actual number of clock cycles per instruction for NIOS II is from seven to 39.
While the actual number of clock cycles per instruction for OpenMSP430 ranges
from one to six, we use the same intervals for comparison purpose.

The false negative rate is computed from the percentage of 7-/14-/21-cycle
execution traces of different code and/or data on the testing chip, but having r
greater than the threshold with the model prediction of executing target code
with desired data. Table 2 lists the false negative rates when the EM traces
are aligned with starts of execution, applicable to the case in which tampered
code/data executes in the same number of clock cycles with the target code.
Table 3 lists the false negative rates for arbitrary EM traces that are aligned or
misaligned with the original one.

The results show that the probability of random malware evading the in-
tegrity checking is very low. Even compact malware (very few instructions) can
be detected reliably. Both false positive and false negative rates decrease rapidly
as the number of clock cycles increases. When the number of cycles is fixed, there
is a tradeoff between false positives and false negatives: a lower threshold will
reduce false positives at a cost of higher false negatives. Note that the thresh-
old and number of cycles can be computed to achieve desired false positive and
false negative rates. Overall, the side-channel-based integrity check is effective
to detect a conventional attacker.

Next, we consider a side-channel-aware attacker who actively tries to com-
pute alternative code that has near indistinguishable EM radiation from the
original code. To rewrite malware with semantically equivalent code but hav-
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five different instructions

Fig. 7: EM measurements of add r3,r16,r16 for system A; red cross indicates
the same instance of executing add r3,r16,r16

ing similar EM measurements with the normal program, the attacker needs to
know the reverse mapping from EM radiation to runtime state including in-
structions and data. The success rate of preventing the attacker from doing so
relies on the hardness to obtain such mapping. We first analyze the side-channel
of instructions classified by operations (e.g., add, call), as done in previous
research [14, 22, 26, 51, 56]. We find that significant variation exists among
instructions of the same operations, and EM measurements of different oper-
ations are not discriminatory. Figure 6 shows the EM measurements grouped
by operations. Figure 7a shows an example in which even when executing the
same instruction (add r3,r16,r16), the EM radiation varies significantly. On
the other hand, EM measurements of executing different instructions may have
nearly the same value. Figure 7b shows an example in which the EM trace of
one execution of add r3,r16,r16 has nearly the same value with those of five
different instructions of different operations. This can be quantified by class (i.e.,
operation) separability by using within-class and between-class scatter matrices:

J =
trace(Sm)

trace(Sw)
, Sm = Sw + Sb

Sw =
M∑
i=1

PiΣi, Sb =
M∑
i=1

Pi(µi − µ0)(µi − µ0)
T

where each operation is a class, Pi is the a prior probability of operation i,
M is the total number of operations, µi is the mean of operation i, Σi is the
covariance of i, and µ0 = sumM

i=1Piµi is the global mean vector. We compute
the statistics of 53 common operations. The resulting J is 1.23, very close to
one, which means that EM radiation, when grouped by operations, is not well
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clustered and is nearly indistinguishable from each other. For system C, the
number of clock cycles per instruction varies from one to six, and depends on
the addressing modes of the source and destination operands. Table 4 shows
class separability for different clock cycles. The resulting J is still close to one.

Table 4: Class separability J for system C

one cycle 3.81 four cycles 1.71
two cycles 16.63 five cycles 1.54
three cycles 7.51 six cycles 1.37

As shown in Sections 6, the EM model is a function of thousands of selected
gate-level signal switches. The operations, bus signals, and M9K signals, which
can be easily deduced from code, only contribute to a small portion of EM vari-
ance. Even if exactly the same instruction is executed, different runtime state
of other signals will cause significantly different EM radiation. The attacker has
to rewrite malware based on the many thousands gate-level signals which can-
not be manipulated arbitrarily, but rather through the programming model of
the processor. Furthermore, the gate-level signals are synthesized and optimized
results of the processor core, whose relationship with the assembly code is un-
known. Without knowing the design of the processor, as in the case of NIOS
II, or without the ability to deal with processor complexity, the attacker will
have to exhaustively search for alternative malware code that has similar EM
radiation. In addition, each combination of operation and operands will result in
a different internal state at each clock cycle. As the length of EM measurements
increases linearly, the complexity of searching increases exponentially, effectively
making the attack impractical. Detailed information on experiment setup, data,
two ports of test code, and results are available at [2].

9 Discussion and Future Work

We have quantified the effectiveness and generality of using low-cost acquisition
equipment to verify runtime states of three FPGA-based SoCs passively and non-
invasively, against both conventional and side-channel-aware attackers. Profiling
and testing use different chips (boards) of the same model. We show that by
using our variable selection procedure and regression techniques, it is possible to
model EM radiation of complex and gray-box processor-core-based SoC systems
with high accuracy at clock-cycle granularity. Linear regression has also been
used to break cryptographic hardware from side-channel leakage [15, 32, 39, 52].
Note that attacking cryptographic hardware is chiefly concerned with special
time points that leak key materials during multiple executions of the same cryp-
tographic routine. In contrast, for integrity checking, we must detect one-time
execution of malware from a single measurement and must consider instruction
operations, operands, register and memory content.
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Since we build side-channel models from simulation results, it can be inferred
that directly applying the method for integrity checking requires the system to be
deterministic. For example, no context switching should happen when measuring
a target program. To what extent our approach can be applied for integrity
checking of non-deterministic systems is left for future work.
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