
Retrofitting Communication Security into a
Publish/Subscribe Middleware Platform

Carlos Salazar and Eugene Y. Vasserman

Kansas State University

Abstract. The Medical Device Coordination Framework (MDCF) is an
open source middleware package for interoperable medical devices, de-
signed to support the emerging Integrated Clinical Environment (ICE)
interoperability standard. As in any open system, medical devices con-
nected to the MDCF or other ICE-like network should be authenticated
to defend the system against malicious, dangerous, or otherwise unautho-
rized devices. In this paper, we describe the creation and integration of a
pluggable, flexible authentication system into the almost 18,000 lines of
MDCF codebase, and evaluate the performance of proof-of-concept de-
vice authentication providers. The framework is sufficiently expressive to
support arbitrary modules implementing arbitrary authentication proto-
cols using arbitrarily many rounds of communication. In contrast with
the expected costs in securing nontrivial systems, often involving ma-
jor architectural changes and significant degradation of system perfor-
mance, our solution requires the addition of just over 1,000 lines of code
(∼ 5.56%), and incurs performance overhead only from the authentica-
tion protocols themselves, rather than from the framework.

1 Introduction

Medical devices have a history of being stand-alone units [1, 2], and most devices
currently used in clinical environments stay true to this paradigm. Even when
a device manufacturer has implemented some interoperability features, they are
not designed to interoperate with devices or software from other manufacturers.
Interoperability is confined to vertically integrated systems, preventing technol-
ogy diversification and promoting vendor lock-in. When implemented, connectiv-
ity is typically only used for logging device data [1]. Simply put, medical devices
do not play well with others. This stands in contrast to other domains such
as avionics, which implement cross-vendor interoperability using an integrated
platform [3].

Many in the clinical and medical device community see a need for an in-
tegrated “system of systems” for medical devices. This has led to the creation
of the Integrated Clinical Environment (ICE) standard [4] and the Medical De-
vice Coordination Framework (MDCF) project [5]. MDCF is a publish/subscribe
middleware for coordinating medical devices, architected in logical units analo-
gous to those described in the ICE standard.

1



While interoperable medical systems can provide numerous benefits, such as
improved patient safety, reduced medical errors, and automated clinical work-
flows [5, 6], there are serious security and privacy concerns given the sensitive
nature of patients’ medical data. An attacker who could alter data or prevent
its transmission could cause serious harm, or even death. Consequently, authen-
tication, encryption, and more advanced data protection features must be incor-
porated into the MDCF. These functions should be implemented in a modular
manner, allowing device manufacturers to implement as many or as few features
as they want (or can support, given power constraints). Ideally, pre-built stan-
dard authentication and encryption modules will be available from a certification
body or third-party software developers [2]. The MDCF should maximize com-
patibility by offering many security implementations, and should be extensible
to ease future integration of evolving technologies. Our modular implementa-
tion approach is similar to that of Java or OpenSSL security services [7, 8],
instantiated by name rather than a function call to a specific method.

Taken together, our modifications to MDCF lay the foundation not only
for adding robust authentication and encryption capabilities, but also for easing
medical device developer workload by removing the need to write authentication
and encryption modules from scratch – pre-defined client-side modules can be
used with little or no modification, guaranteeing compatibility as MDCF-side
module counterparts have already been implemented.

1.1 Requirements

The purpose of the MDCF device security framework is to serve as an abstrac-
tion layer which allows developers to implement different protocols (modules)
for device authentication and data confidentiality without having to modify the
framework itself. Building such a framework therefore requires some foresight
into which MDCF components need to be modified, and how to design the au-
thentication API to be developer-friendly or mostly transparent. Furthermore,
we must temporarily maintain backward compatibility (with older devices which
do not implement security) as not to break test cases for other ongoing develop-
ment efforts which use the MDCF.

The MDCF device security framework must hook in to the existing MDCF
code base while maintaining backwards compatibility with existing devices. Inte-
gration of the device security framework should not require significantly chang-
ing the fundamental design/architecture of the MDCF connection state machine
or otherwise disturb the overall logical separation of MDCF components – the
incorporation of communication security should be mostly or completely trans-
parent to developers working with (or modifying) the MDCF code or message
transport layer.

Our target “users” are developers working on new MDCF-compliant devices.
They will interact with this framework in two ways: using security providers on
devices they create, and/or by creating security providers (the API should
be expressive, powerful, and easy to use). We will take authentication
providers as our example, but data confidentiality (encryption) providers are

2



supported as well. There are multiple authentication providers already imple-
mented and provided for developers. However, we do not prevent developers from
building their own authentication modules (the framework should allow de-
velopers to implement arbitrary authentication protocols), as long as
the MDCF can support the protocol (implementing MDCF authentication
modules should not require the alteration of the MDCF). Finally, we
must ensure minimal overhead from the authentication framework (the only
source of overhead should be the authentication modules themselves,
and not the hooks and additional calls to the framework core or messaging layer).
In other words, if no authentication happens, no security framework overhead
should be visible.

1.2 Authentication Hooks

The MDCF had no implemented security controls when we began, nor was the
software written with security in mind. We modified the MDCF to place security
“hooks” in several key places in the code to allow for later implementation and
deployment of self-contained security modules (similar in spirit to SELinux [9]).
The goal was to ensure that these hooks are positioned in a way that allows
maintainers to write security modules that are sufficiently “expressive.” The
MDCF communicates with devices over logical channels, so a natural design
choice is to “wrap” the channel in a manner that is transparent to higher-level
functions, produce correct output when accessed by an authorized entity, and
refuse access to unauthorized users or code.

The resulting modifications to the almost 19,000 lines of the MDCF code
base are relatively compact: the security framework (without providers) consists
of just over 1,000 lines of code (about 5.56% of the total MDCF). We tested
the expressive power of the newly-implemented hooks by first developing a NULL

authentication provider, similar to the IPsec NULL encryption method [10],
then implementing several other modules, including TLS and DSA. This shows
that the security framework is sufficiently flexible to implement almost arbitrary
protocols as authentication modules, with an arbitrary number of messages ex-
changed, all transparent to developers unless they do not use the built-in modules
but rather choose to implement their own authentication providers.

1.3 Authentication Providers

Hooks are only part of the solution implementing device authentication in the
MDCF. We must also have a component that encapsulates the actual authentica-
tion protocol – the authentication provider. All providers implement a common
interface so that providers for different protocols can easily be “hooked up.”
Providers come in pairs – one for the MDCF and another for any device which
will support this authentication type, to remove the burden of implementing
security-sensitive code from device developers. The provider is responsible for
reserving channels to communicate, as well as the actual reception and trans-
mission of messages for its protocol. The device version of the authentication

3



provider, in addition to running the authentication protocol, is also responsible
for generating the contents of authentication messages sent from a device to
the MDCF at the beginning of the connection process. This object identifies the
protocol that the device requests to use to authenticate itself. The authentication
protocol(s) supported by a device is specified in its metadata, then instantiated
by name upon device connection (at runtime). Similarly, the MDCF retrieves its
provider by name, based on the protocol specified in a message from the device
to the MDCF at device connection time.

1.4 Robustness and Resource Allocation

When implementing authentication protocols, it is important to consider denial
of service (DoS) attacks in the form of resource consumption (e.g. SYN flood
attack commonly used against web servers [11]). To increase robustness of the
MDCF to such attacks, we use the laziest practical resource allocation strategy.
For example, one potential first step in device authentication is, upon device
connection, to create private channels for this device to communicate with the
MDCF. These channels are logical addresses used by the underlying Channel Ser-
vice, also referred to as the message bus (e.g. OpenJMS, ActiveMQ [12]). Note
that this occurs before the device has authenticated successfully, and therefore
devices which may never be allowed to communicate with the MDCF can tie
up resources either through malice or implementation mistakes. Using only pre-
allocated resources (specifically, a pool of pre-allocated authentication providers)
until after successful authentication allows us to avoid this problem, so we take
special care in placing authentication hooks to minimize resource usage. Ma-
licious devices may keep the pool drained, but honest providers should still be
able to eventually connect successfully, with wait times bounded in practice with
high probability [13].

2 Background

2.1 ICE

The Integrated Clinical Environment (ICE) is a platform meant to be a ubiq-
uitous standard for medical device interoperability, akin to USB or Wi-Fi in
the consumer realm. The goal is to create a functioning system by taking a
component-wise approach [2]. In ICE architectures, devices are connected to a
component called the Network Controller. This component can be considered
the network abstraction: it facilitates communication between devices and ap-
plications (automated medical workflows) running on the Supervisor. Figure 1
illustrates the basic architecture of ICE.

The ICE Supervisor hosts apps in isolated environments and guarantees
runtime resources like RAM and CPU time. In the ICE architecture, apps are
programs that can display patient data as well provide control over devices which
support it.

4



Fig. 1. The primary components of the ICE architecture. External interface, and pa-
tient connected to devices, are omitted.

The ICE Network Controller facilitates communication between Super-
visor apps and medical devices. All ICE communication takes place through
messages sent over virtual channels maintained by the Network Controller (NC).
Each channel is specific to a device-app pair. Whenever a new device connects
to an ICE system, it is the Network Controller that “discovers” the new device
and performs the connection/handshaking and authentication protocols.

2.2 MDCF

The Medical Device Coordination Framework (MDCF) is an open source plat-
form for coordinating and integrating medical devices in order to streamline and
automate clinical workflows [5]. The MDCF is intended to be a significant step
towards creating a system compliant with the ICE standard. Figure 2 shows
the organization of MDCF components with respect to the ICE architecture
described in the previous section. They are described in detail below.

Supervisor Components
The App Manager manages the life-cycle of apps; meaning that it starts

5



Network Controller

Supervisor
App
An

...App
A1

App
A2

App
A3

App Manager

Connection 
Manager

Device
Manager

Device
Registry

Component
Manager

Device
D1

Device
D2

Device
Dm

...
Channel
Service a

c

b

Fig. 2. MDCF components grouped by their logical ICE architecture role and showing
primary hook locations (circles a,b,c).

and stops the execution of apps, provides isolation and service guarantees, mon-
itors and resolves (or notifies clinicians of) “clinically important” (e.g. medically
adverse) interactions or architectural interactions (e.g. two apps trying to get
exclusive control of one device).

The Clinician Service provides an interface for selecting, instantiating,
and configuring Supervisor apps for use with a clinician console GUI. New apps
can be started and running ones can be configured. Appropriate user authenti-
cation/login will be required.

The Administration Service provides controls for managing and installing
Supervisor apps and components. Appropriate user authentication/login will be
required. This service should not need to reconfigure running applications, and
should be prevented from doing so by the App Manager.

Network Controller Components
The Channel Service provides interfaces between middleware platforms

and the rest of the MDCF. It contains interfaces for the messaging server (e.g.
OpenJMS, ActiveMQ [12]), message senders, message receivers and message lis-
teners. It is partially responsible for inter-app and inter-device data isolation
and performance guarantees. It houses the code for all authentication providers,
as well as all interfaces and factories related to authentication providers (Fig-
ure 2(a)).

6



The Connection Manager manages connections with devices and the cre-
ation and destruction of channels through direct interaction with the message
provider. The Connection Manager is directly involved with device authentica-
tion. It also contains the main hooks for the Network Controller authentication
providers (Figure 2(b)).

The Device Manager sets the status of a device as connected or discon-
nected, sends commands to devices to start or stop publishing, and configures
devices for use with specific apps.

The Device Registry stores and retrieves information about devices from
a database. For each device, it stores and provides access to information such
as its type, name, metadata, and active apps associated with it. We augment
this data structure to store security metadata, such as active encryption keys
for device private channels.

The Component Manager manages MDCF app components and works
in a way analogous to the Device Registry. It is used to store and retrieve infor-
mation about app components.

2.3 MDCF Connection State Machine

The implementation details of the device connection protocol (using a state
machine), shown in Figure 3, are particularly relevant for device authentication.
Each state is implemented as a separate Java class. It is within these classes
that the messages in the connection process are sent and received. Effectively,
two connection state machines exist for each device; the device and the Network
Controller each maintain their own separate views of this state machine. These
different views of the connection state machines are utilized to ensure that all
of the steps in connection process are executed in the appropriate order. (In the
text, we refer to the Network Controller view of the state machine, unless
stated otherwise.) Each state machine is associated with a single object that can
be used to access or modify the current state. These classes are also used to store
any information that needs to be accessed by more than one state. The states
most relevant to device authentication are:
DISCONNECTED: The initial state. The device sends the AUTH message
during the DISCONNECTED state. Upon reception of the AUTH message, the
Network Controller initializes its view of the connection state machine and moves
into the AUTHENTICATING state.
AUTHENTICATING:Upon receipt of the AUTHmessage, the Network Con-
troller allocates and connects to private channels for the device and sends the
channel information to the device in an AUTH ACCEPTED message. The de-
vice connects to the channels, after this point the rest of the messages used for
connection are sent across these private channels. Note that “private” is used
here not to denote confidentiality, but rather than these channels are logically
dedicated to communication with a specific device (as opposed to the public
“atrium” channel).
AUTHENTICATED: The device has been successfully authenticated. It sends
an INTERFACE message to test the private channels before progressing into the

7



Fig. 3. MDCF Connection State machine, with the outline denoting portions relevant
to connection-time authentication.

ASSOCIATING state. (The INTERFACE message is a confirmation that the pri-
vate channels set up at the end of the AUTHENTICATING state are working.
The content of the message is a fixed string.) Although we routinely refer to
the device authenticating to the Network Controller, it is trivial to extend the
protocol to support mutual authentication.
ASSOCIATING: Upon receipt of the INTERFACE message, the Network
Controller creates heartbeat and acknowledgment channels. The device peri-
odically publishes heartbeat messages on this channel, enabling the Network
Controller to detect an unexpected device disconnection (if too many heart-
beat messages are missing). The Network Controller communicates these pri-
vate heartbeat channels to the device and then transitions to the ASSOCIATED
state.
ASSOCIATED: The device is fully connected in this state. The device will
remain in this state unless it ceases to be connected and transitions to either the
LOST or DISCONNECTED state.
LOST: When too many device heartbeats have been lost, the Network Con-
troller places the device in the LOST state. It must then attempt to reconnect,
transitioning into the RECONNECTING state. (If the device state machine is
not in the LOST state, and it successfully communicated with the Network Con-

8



troller, it will be explicitly told to reconnect.)
RECONNECTING: A device in this state is attempting to reconnect. If re-
connection is successful, the device it returns to the ASSOCIATED state. Oth-
erwise, the device transitions to the DISCONNECTED state. The Network Con-
troller remains in the RECONNECTING state for a fixed amount of time, or
until the device successfully reconnects. Only devices which have been previ-
ously authenticated may be in the reconnecting state. Depending on the specific
authentication protocol used, device credentials may become “stale” while it is
attempting to reconnect, and it will be moved to the DISCONNECTED state.

In practice, to minimize resource usage and protect against resource DoS at-
tacks, the state machine object used for a connection by the Network Controller
(in the transition from DISCONNECTED to AUTHENTICATING) is taken
from a pool of pre-allocated objects. When the Network Controller “destroys” a
state machine, it is returned to the object pool. Note that this prevents devices
from connecting when the pool is exhausted (either due to a large number of con-
nected devices or an active attack). This is by design: devices that authenticate
successfully will eventually connect, and devices which cannot authenticate but
are performing the attack cannot cause more objects to be allocated. Although
malicious devices may keep the pool drained, an honest client will eventually
(probabilistically) succeed in sending an AUTH message to the MDCF through
the flood of adversarial messages, thus reserving a provider. Authenticated con-
nections are long-term, so honest devices need only succeed once. When under
attack, the time needed for an honest device to connect may be arbitrarily long,
but in practice would be bounded with high probability [13].

3 Security Design

3.1 Device Authentication Hooks

The MDCF connection state machine, before the introduction of authentica-
tion, automatically transitioned from the AUTHENTICATING state to the AU-
THENTICATED state (without implementing authentication). To make authen-
tication as seamless as possible for MDCF developers, hooks were placed such
that all authentication protocols are executed while in the AUTHENTICAT-
ING state. Although authentication protocols themselves may involve multiple
rounds of message exchange, this is hidden and encapsulated by the AUTHEN-
TICATING state. The net result is that a full authentication protocol can be
implemented without requiring any changes to the remainder of the system, pro-
vided any communication channel between the device and Network Controller
have already been set up.

To make this possible, hooks are placed so that the protocol is executed
after the AUTH message is exchanged but before the AUTH ACCEPTED mes-
sage is sent. These messages are sent and received within the DISCONNECTED
and AUTHENTICATING states. Therefore, the primary location for the hooks
is within the connection state machine. Our API does not enforce any restric-
tions on either the number of rounds or the content of messages exchanged by

9



authentication providers. Thus the framework satisfies the requirement that de-
velopers are allowed to implement arbitrary authentication protocols. Because it
is possible to implement arbitrary authentication protocols, developers may cre-
ate providers which facilitate server authentication in addition to the standard
client (device) authentication. An authentication provider factory is initialized
at runtime, and a provider pool (with at least one provider) is ready when a
device calls the provider at connection time. The provider is fetched by name
(requested by the connecting device) from the pool and executed from within the
DISCONNECTED and AUTHENTICATING states. The AUTH message con-
tains an authentication object that stores two pieces of information: a value
specifying the authentication protocol requested by the device, and the device’s
public key.

In addition to the hooks described above, an additional message must be sent
from the Network Controller to the device across the atrium channel (used by all
devices upon initial connection). This message, called the AUTH PROTOCOL
message, was required as part of this implementation. It contains information
about the channels that will be used by the authentication provider to execute
an authentication protocol and may also include other information such as the
public key of the Network Controller. The authentication providers have ac-
cess to two channels with which they can communicate with each other. The
NULL authentication providers currently make use of the public atrium chan-
nels, from mgr atrium and to mgr atrium. It should be noted that these chan-
nels were used out of convenience for this initial implementation, but they are
ill suited for this purpose because every message sent on from mgr atrium is
effectively broadcast to all other devices leading to unnecessary communica-
tion overhead. Future authentication providers will use private channels in-
stead. Authentication providers execute their protocol when their respective
runAuthProtocol() methods are called. (Note that this is not a security risk, as
all messages between the MDCF and the device would be end-to-end encrypted
and authenticated in a production system.) The connection state machines wait
for these methods to return boolean values to indicate either a successful or
failed authentication attempt. If the authentication fails then the device is dis-
connected, otherwise, the device resumes the connection process.

The location of the authentication hooks also allows us to ensure that authen-
tication can not be bypassed (unless disabled totally by a system administrator).
The only way that a device can connect to the MDCF is by progressing through
the correct sequence of states in the connection state machine. The sequence of
states can be seen in Figure 3. A device begins in the DISCONNECTED state.
From there, it may only transition to the AUTHENTICATING state. A device
in the AUTHENTICATING state must enter the DISCONNECTED state if au-
thentication fails, or AUTHENTICATED if it succeeds. Each device must go
through the AUTHENTICATING state in order to connect. The authentication
hooks are placed such that an authentication provider must execute before a de-
vice can transition from AUTHENTICATING to AUTHENTICATED, therefore
authentication may not be bypassed.

10



3.2 Message Confidentiality and Authenticity Hooks

In addition to the authentication hooks, we have added hooks for channel secu-
rity providers. These providers allow us to gain confidentiality through message
encryption, and enforce and verify the integrity and authenticity of messages
using digital signatures or message authentication codes. (Although the channel
security providers are an essential part of the overall MDCF security architec-
ture, we primarily focus on evaluating authentication providers in this work.)

To gain these additional security properties, we position hooks within the
channel service so that every message sent or received by a device or app must
pass through a channel security provider. Each channel security provider is able
to apply arbitrary transformations on a message, so we can transparently en-
crypt, decrypt, and authenticate messages. During the initialization of a mes-
sage sender or receiver, it is bound to a channel security provider, ensuring
that security-related transformations on messages may not be bypassed. Chan-
nel security providers come in pairs – one for sending a message and another
for receiving a message. The application of these providers is on a channel-by-
channel basis, making it possible to extend this feature to provide fine-grained
control over how confidentiality, integrity, and authenticity are enforced for each
channel. We envision that a device’s long term keys, obtained during device au-
thentication, will be stored within the Device Registry. These long term keys
might then be used in some way to derive short term keys for encryption and
message authenticity/integrity. To date, we have implemented a NULL channel
security provider, which performs no operations on a message, and another one
which uses Java’s built in TLS provider, which is passed to the channel security
providers from the TLS authentication provider.

3.3 NULL Authentication Provider

To check the overhead of our design and the expressiveness of the hooks, we im-
plemented a NULL authentication provider, which authenticates successfully if it
receives a message “PONG” in response to its challenge “PING.” The execution
of the provider is mapped out in Figure 4 and described below.

1. The MDCF and device initialize. The MDCF initializes providers and pop-
ulates its provider pool.

2. The device fetches any1 supported authentication method from the device-
side authentication provider object, then composes and sends an AUTH
message to the Network Controller (NC) with the name of the authentication
algorithm.

3. Upon reception of the AUTH message, the NC creates its own view of the
connection state machine for this device. It then fetches the appropriate
pre-initialized authentication provider from the provider pool, and passes
the contents of the AUTH message to this provider.

1 Multiple methods may be supported both by the device and the MDCF, but cur-
rently negotiation is not implemented.

11



AUTH_PROTOCOL

AUTH Connection State M
achine

NC
Authentication

Provider

Device Interface Network Controller

ping

AUTH_ACCEPTED

pong
Co

nn
ec

ti
on

 S
ta

te
 M

ac
hi

ne

Device
Authentication

Provider

1
2

3
4

5

6

1

Fig. 4. Illustration of the authentication process using the NULL provider.

4. The NC-side authentication provider obtains channels to be used for execut-
ing the authentication protocol with the device. It then sends an
AUTH PROTOCOL message to the device that specifies which channels
should be used by the authentication protocol only (the device is assigned
new channels after it successfully authenticates).

5. The protocol is executed, for the NULL authentication provider, which simply
consists of an exchange of the strings “PING” and “PONG” between the
device and NC.

6. Upon successful competition of the protocol, the NC creates new private
channels for the device, sending the handles of those channels to the device
in an AUTH ACCEPTED message.

In addition to our NULL provider, we implemented three “non-trivial” providers
for evaluation purposes: SSL/TLS, DSA, and DSA+DH. This exercise allowed us
to confirm that we meet two of our stated requirements. We found that the API
is sufficiently expressive, powerful, and easy to use. Also, as we explain later in
this section, we found the only source of overhead comes from the authentication
modules themselves. Compared to developing and implementing the framework,
creating a provider is relatively simple, e.g. our SSL/TLS provider is only 207
lines of Java code. It is based on Oracle’s java.net.ssl implementation, run-
ning TLS 1.2 and using the TLS DHE DSS WITH AES 128 CBC SHA cipher suite.
This implementation can be trivially expanded to support mutual authentica-
tion with only a few additional lines of code (SSL/TLS provides this as standard
functionality). Code length metrics for all providers are in Table 1. The other two
authentication providers (DSA and DSA+DH) use a simple challenge-response
protocol in which a message from the device to the Network Controller includes
a DSA signature from the device. Upon receiving this message, the Network

12



Provider Implementation (LOC) Increase over NULL

MDCF Device MDCF Device
NULL 128 72 1 1
DSA 151 120 1.18 1.67
DSA+DH 200 178 1.56 2.47
SSL/TLS 207 171 1.62 2.38

Table 1. Authentication provider (device- and MDCF-side), complexity measured us-
ing lines of code (LOC), and complexity increase from the NULL provider. NULL is little
more than the common infrastructure/scaffolding. The “Increase over NULL” column
is therefore a more accurate representation of the code complexity increase of new
authentication modules.

Controller verifies the signature and then sends a signed response message to
the device. Once the device verifies this response, the authentication protocol
terminates – note that this is a mutual authentication protocol.

4 Evaluation

In order to confirm that we meet the requirement of overhead in the authenti-
cation system stemming only from the authentication modules themselves, we
ran performance tests of our modified MDCF implementation on a server with
dual hex-core Intel Xeon X5670 64-bit CPUs at roughly 2.93 GHz, with 12MB
cache and 24GB system RAM, running Linux 3.8.13 and Sun’s Java virtual ma-
chine version 1.7.0 21. The resulting performance is shown in Figure 5. Due to
the limitations of Java and the current MDCF architecture on our testbed, we
could only reliably test 340 or fewer concurrent devices. In an attempt to tax the
resources of the MDCF and our authentication providers, the initial sharp spike
in resource usage is due to all test devices attempting to connect simultaneously.
Each device begins sending physiological data (SpO2 and pulse rate) following
a successful join.

Figures 5(a) and 5(c) show the resource usage of MDCF using unauthenti-
cated connections. The Y axis are constrained for readability. The highest ob-
served CPU utilization within the startup “spike” was 16% (DSA). Figures 5(b)
and 5(d) show the resources used after including framework hooks only (control)
and when using various authentication providers. The highest CPU utilization
within the startup spike was 19.75% (TLS), with DSA and DSA+DH reaching
17.4% and 16.7%, respectively. Each line represents an average of 11 instances
of tests using identical configurations with 340 devices (device-side performance
not shown for readability). The standard error is negligible (the difference be-
tween lines is statistically significant), and error bars have been omitted for
clarity. The control is a version of MDCF without any authentication code at
all – the authentication code was not disabled, but rather removed entirely to
avoid unexpected interactions.

13



0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

4.5	  

5	  

0	   50	   100	   150	   200	   250	   300	  

%
	  C
PU

	  u
.l
iz
a.

on
	  

Time	  since	  system	  start	  

CPU	  usage	  without	  authen.ca.on	  

control	  

TLS	  

DSA	  +	  DH	  

DSA	  

(a) MDCF processor usage with all de-
vices permitted

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

4.5	  

5	  

0	   50	   100	   150	   200	   250	   300	  

%
	  C
PU

	  u
.l
iz
a.

on
	  

Time	  since	  system	  start	  

CPU	  usage	  with	  authen.ca.on	  

control	  

TLS	  

DSA	  +	  DH	  

DSA	  

(b) MDCF processor usage with only au-
thenticated devices permitted

0%	  

1%	  

2%	  

3%	  

4%	  

5%	  

6%	  

7%	  

8%	  

9%	  

10%	  

0	   50	   100	   150	   200	   250	   300	  

%
	  M

em
or
y	  
u4

liz
a4

on
	  

Time	  since	  system	  start	  

Memory	  usage	  without	  authen4ca4on	  

control	  

TLS	  

DSA	  +	  DH	  

DSA	  

(c) MDCF memory usage with all de-
vices permitted

0%	  

1%	  

2%	  

3%	  

4%	  

5%	  

6%	  

7%	  

8%	  

9%	  

10%	  

0	   50	   100	   150	   200	   250	   300	  

%
	  M

em
or
y	  
u4

liz
a4

on
	  

Time	  since	  system	  start	  

Memory	  usage	  with	  authen4ca4on	  

control	  

TLS	  

DSA	  +	  DH	  

DSA	  

(d) MDCF memory usage with only au-
thenticated devices permitted

Fig. 5. MDCF resource usage with 340 virtual devices running on a different host.

The entire authentication framework consumes negligible resources – indis-
tinguishable from control, satisfying our requirement. Authentication modules in
Figures 5(a) and 5(c) show a modest but fixed resource cost. They are included
in the running code, and a fixed number are initialized to populate the provider
pool, but are inactive – devices do not include authentication code and therefore
never request to authenticate (backward compatibility mode). Running authen-
tication modules impose an increase in resource usage dependent on the specific
protocol being used (resource usage is protocol-dependent).

The network overhead in terms of latency and traffic volume is highly depen-
dent on the individual protocol being used, and can be tuned (by selecting the
appropriate protocol) depending on requirements. Authentication imposes a one-
time latency increase due to the larger number of network round trips required
at connection time, but the observable slowdown is negligible, and only occurs
once – upon initial device connection. We found that only the TLS provider
caused an increase in bandwidth usage, but to such a small extent as not to
interfere with normal operation.

14



5 Conclusion

In this work we extended the existing MDCF high-assurance medical coordina-
tion middleware to add a flexible and modular authentication framework, and
showed that, in practice, the framework scaffolding itself adds negligible overhead
at execution time. The set of hooks introduced into the MDCF, while minimal, is
nonetheless sufficiently expressive to support the design and integration of arbi-
trary modules implementing arbitrary authentication protocols using arbitrarily
many rounds of communication before passing control back to the body of the
MDCF. Moreover, the code is fully concurrent – devices do not have to wait “in
line” to authenticate, but are handled at the same time. Authentication requests
can be processed simultaneously, limited only by the performance of the MDCF
itself, as authentication scaffolding did not result in significant overhead.

While we do not implement the authentication protocols that we expect to be
used in practice (ours are somewhat simplified), we nonetheless observe that the
framework itself does not impose undue burden on the coordination middleware,
and therefore the performance of future security modules will be bounded by the
efficiency of those protocols themselves and their individual implementations,
not the cost of dynamic dispatch and call-at-runtime semantics of the modular
security framework. Auto-generation of device module code from MDCF-side
code, as well as implementing and measuring individual authentication protocol
performance on the MDCF and device sides is left up to future work. Further,
our current providers rely on pre-shared certificates, but in practice this may
not be the case – a “true” Plug-n-Play device, connecting for the first time, will
have to transmit its certificate, leading to greater network overhead. Developing
and evaluating full certificate trust chain verification is likewise future work.

Acknowledgments

The authors would like to thank Daniel Andresen for his input and help in
testing the prototype. The computing for this project was performed on the
Beocat Research Cluster at Kansas State University, which is funded in part by
NSF grants CNS 1006860, EPS 1006860, and EPS 0919443. This research was
supported in part by the NIH grant 1U01EB012470-01 and NSF awards CNS
1126709, CNS 1224007, and CNS 1253930.

15



Bibliography

[1] Hatcliff, J., Vasserman, E., Weininger, S., Goldman, J.: An overview of reg-
ulatory and trust issues for the integrated clinical environment. In: Joint
Workshop On High Confidence Medical Devices, Software, and Systems
& Medical Device Plug-and-Play Interoperability (HCMDSS/MD PnP).
(2011)

[2] Hatcliff, J., King, A., Lee, I., MacDonald, A., Fernando, A., Robkin, M.,
Vasserman, E.Y., Weininger, S., Goldman, J.M.: Rationale and architecture
principles for medical application platforms. In: International Conference
on Cyber-Physical Systems (ICCPS). (2012)

[3] Conmy, P., Nicholson, M., McDermid, J.: Safety assurance contracts for
integrated modular avionics. In: Australian Workshop on Safety Critical
Systems and Software (SCS). Volume 33. (2003)

[4] ASTM Committee F-29, Anaesthetic and Respiratory Equipment, Subcom-
mittee 21, Devices in the integrated clinical environment: Medical devices
and medical systems — essential safety requirements for equipment com-
prising the patient-centric integrated clinical environment (ICE) (2009)

[5] King, A., Procter, S., Andresen, D., Hatcliff, J., Warren, S., Spees, W.,
Jetley, R., Jones, P., Weininger, S.: An open test bed for medical device
integration and coordination. In: International Conference on Software En-
gineering (ICSE). (2009)

[6] Arney, D., Weininger, S., Whitehead, S.F., Goldman, J.M.: Supporting med-
ical device adverse event analysis in an interoperable clinical environment:
Design of a data logging and playback system. In: International Conference
on Biomedical Ontology (ICBO). (2011)

[7] Gong, L., Ellison, G.: Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation. 2nd edn. Pearson Education (2003)

[8] OpenSSL: OpenSSL: Documents, ssl(3). https://www.openssl.org/

docs/ssl/ssl.html (2012)
[9] McCarty, B.: SELinux: NSA’s open source security enhanced Linux.

O’Reilly (2005)
[10] Glenn, R., Kent, S.: The NULL encryption algorithm and its use with IPsec

(1998)
[11] Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zam-

boni, D.: Analysis of a denial of service attack on TCP. In: IEEE Symposium
on Security and Privacy. (1997)

[12] Snyder, B., Bosanac, D., Davies, R.: ActiveMQ in Action. Manning Pubs
Co Series. Manning Publications (2011)

[13] Millen, J.K.: A resource allocation model for denial of service. In: IEEE
Symposium on Security and Privacy. (1992)

https://www.openssl.org/docs/ssl/ssl.html
https://www.openssl.org/docs/ssl/ssl.html

	Retrofitting Communication Security into a Publish/Subscribe Middleware Platform

